Multi-stream to many-stream: using spectro-temporal features for ASR

نویسندگان

  • Sherry Y. Zhao
  • Suman V. Ravuri
  • Nelson Morgan
چکیده

We report progress in the use of multi-stream spectro-temporal features for both small and large vocabulary automatic speech recognition tasks. Features are divided into multiple streams for parallel processing and dynamic utilization in this approach. For small vocabulary speech recognition experiments, the incorporation of up to 28 dynamically-weighted spectro-temporal feature streams along with MFCCs yields roughly 21% improvement on the baseline in low noise conditions and 47% improvement in noise-added conditions, a greater improvement on the baseline than in our previous work. A four stream framework yields a 14% improvement over the baseline in the large vocabulary low noise recognition experiment. These results suggest that the division of spectro-temporal features into multiple streams may be an effective way to flexibly utilize an inherently large number of features for automatic speech recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-stream spectro-temporal features for robust speech recognition

A multi-stream approach to utilizing the inherently large number of spectro-temporal features for speech recognition is investigated in this study. Instead of reducing the featurespace dimension, this method divides the features into streams so that each represents a patch of information in the spectrotemporal response field. When used in combination with MFCCs for speech recognition under both...

متن کامل

Phoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain

This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...

متن کامل

New Approaches Towards Robust and Adaptive Speech Recognition

In this paper, we discuss some new research directions in automatic speech recognition (ASR), and which somewhat deviate from the usual approaches. More specifically, we will motivate and briefly describe new approaches based on multi-stream and multi/band ASR. These approaches extend the standard hidden Markov model (HMM) based approach by assuming that the different (frequency) channels repre...

متن کامل

Robustness of spectro-temporal features against intrinsic and extrinsic variations in automatic speech recognition

The effect of bio-inspired spectro-temporal processing for automatic speech recognition (ASR) is analyzed for two different tasks with focus on the robustness of spectro-temporal Gabor features in comparison to mel-frequency cepstral coefficients (MFCCs). Experiments aiming at extrinsic factors such as additive noise and changes of the transmission channel were carried out on a digit classifica...

متن کامل

Complementarity of MFCC, PLP and Gabor features in the presence of speech-intrinsic variabilities

In this study, the effect of speech-intrinsic variabilities such as speaking rate, effort and speaking style on automatic speech recognition (ASR) is investigated. We analyze the influence of such variabilities as well as extrinsic factors (i.e., additive noise) on the most common features in ASR (mel-frequency cepstral coefficients and perceptual linear prediction features) and spectro-tempora...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009